Ву Зонг Чао (КНР)

Предлагаемый тест для мнимого времени при полном отражении

Перевод М.Х. Шульмана

arXiv:0804.0206v1 [quant-ph] 1 Apr 2008

A Proposal of Testing Imaginary Time in a Total Reflection

Zhong Chao Wu

Center for astrophysics University of Science and Technology of China Hefei, Anhui, China

(Oct. 16, 1997)

published in Journal of University of Science and Technology of China, No. 5, 4-7 (1998)

Аннотация

Все парадоксы, связанные со сверхсветовым распространением сигнала, установленные в недавних экспериментах, могут быть устранены с помощью представлений о мнимом времени в квантовой области. Предлагается тестирование мнимого времени при полном отражении.

PACS: 98.80.Hw, 98.80. Bp, 05.60.+w, 73.40.Gk

Имел место ряд заявлений о том, что частица может распространяться быстрее света [1]. Это представляется противоречащим принципу относительности. Одним из побудительных мотивов данной публикации является прояснение этого момента. Я буду вести рассмотрение в квантовой области. Квантовая теория была существенно продвинута новыми исследованиями в квантовой космологии [2][3]. Будет полезным краткий обзор.

В квантовой космологии волновая функция замкнутой вселенной обычно представляется в виде суперпозиции ВКБ-волновых пакетов:

$$\Psi \approx C \exp(-S/\hbar)$$
, (1)

где С — медленно меняющийся множитель, а $S \equiv S_r + iS_i$ — комплексная фаза, при этом временная координата явно не входит в зависимость.

Подставляя это в уравнение Шредингера или Уиллера-деВитта с нулевой энергией, получим

$$\left(-\frac{1}{2}(\nabla S)^2 + V + \hbar \left(\frac{1}{2} \triangle S + \nabla S \cdot \nabla\right) - \frac{1}{2}\hbar^2 \triangle\right) C = 0, \tag{2}$$

где операторы \triangle и ∇ действуют в суперметрике конфигурационного пространства, V – потенциал. Мы можем разделить это уравнение на действительную часть

$$\left(-\frac{1}{2}(\nabla S_r)^2 + \frac{1}{2}(\nabla S_i)^2 + V + \hbar\left(\frac{1}{2}\triangle S_r + \nabla S_r \cdot \nabla\right) - \frac{1}{2}\hbar^2\triangle\right)C = 0,\tag{3}$$

и мнимую часть

$$-C \bigtriangledown S_r \cdot \bigtriangledown S_i + \hbar \left(\frac{1}{2} C \triangle S_i + \bigtriangledown S_i \cdot \bigtriangledown C \right) = 0 \tag{4}$$

Пренебрегая квантовыми эффектами от членов со степенями \hbar в этих уравнениях, найдем из (3) и (4)

$$-\frac{1}{2}(\nabla S_r)^2 + \frac{1}{2}(\nabla S_i)^2 + V = 0, \tag{5}$$

И

$$\nabla S_r \cdot \nabla S_i = 0.$$
 (6)

Если $abla^{S_r} = 0$, то уравнение (5) представляет собой лоренцево уравнение Гамильтона-Якоби, где S и $abla^{S_i}$ идентифицируются с классическим действием и каноническим импульсом соответственно. Можно определить лоренцевы орбиты вдоль путей интегрирования, удовлетворяющих условию $abla^{\frac{\partial}{\partial t}} \equiv
abla^{S_i} \cdot
abla$. Эта волновая функция представляет ансамбль классических траекторий.

Даже если $\nabla^{S_r} \neq 0$, все еще можно рассматривать уравнение (5) как скорректированное уравнение Гамильтона-Якоби. Однако лоренцевы траектории будут покидать орбиты в присутствии потенциала $V - \frac{1}{2}(\nabla S_r)^2$. Если поправкой пренебречь нельзя, то лоренцева эволюция должна заметно измениться по сравнению с классической динамикой. С другой стороны, из уравнения (6) мы знаем, что S_r остается постоянной вдоль этих орбит, и что $\exp(-S_r)$ может быть интерпретирована как относительная вероятность этих траекторий.

Можно интерпретировать эту ситуацию следующим образом: волновая функция состоит из двух динамических частей. S_i представляет лоренцеву эволюцию в действительном времени, в то время как S_r представляет евклидову эволюцию в мнимом времени. Иногда можно перефразировать данную ситуацию, сказав, что вторая динамическая составляющая является как бы "замороженной" с точки зрения действительного времени. Эволюция в действительном времени имеет причинно-следственный характер, в то время как эволюция в мнимом времени является стохастической. Такая концепция получила широкое распространение в квантовой механике. Действительно, результаты недавних экспериментов в квантовой оптике, посвященных исследованию продолжительности туннелирования, могут

рассматриваться как первое экспериментальное подтверждение существования мнимого времени [4].

Вторым побудительным мотивом данной публикации является описание экспериментальной проверки мнимого времени при полном отражении.

If $\nabla^{S_r} = 0$, то уравнение (4) влечет сохранение вероятности лоренцевой эволюции. Если член с \hbar в (3) отражает возникновение вероятности в евклидовой эволюции, это связано с динамикой в мнимом времени. Несохранение вероятности в мнимом времени согласуется со сценарием рождения вселенной.

Вышеприведенный аргумент может быть применен даже к обычным системам, отвечающим уравнению Шредингера. Для системы с независящим от времени гамильтонианом решения могут быть разложены по стационарным состояниям, удовлетворяющим усеченному уравнению, где исчезает внешнее время. Можно рассматривать это усеченное уравнение как уравнение Уилера-ДеВитта. Внутреннее время системы возникнет естественным путем из волновых пакетов, как описано выше [4].

Считается, что в общем случае информация распространяется с групповой скоростью [5]. Скорости, измеренные в упомянутых релевантных экспериментах в данной публикации, связываются с движением в запрещенной с классической точки зрения области, а там групповая скорость не имеет физического смысла.

Можно легко построить модель в рамках квантового подхода. Представим себе частицу с массой m, которая движется в прямоугольной области, т.е. с потенциальной энергией U = 0 для $0 < x < a, 0 < y < b, -\infty < z < \infty$ и $U = \infty$ в другой области. Усеченное уравнение Шредингера для стационарного состояния с энергией E в прямоугольной области есть

$$\triangle \psi + (2m/\hbar^2)E\psi = 0, \qquad (7)$$

Волновая функции имеет вид произведения:

$$\psi_{n_1n_2k} \sim \sin \frac{\pi n_1}{a} x \sin \frac{\pi n_2}{b} y \exp ikz,$$
 (8)

где n_1 , n_2 – целые числа, k – комплексное число, удовлетворяющее условие

$$E = \frac{\pi^2 \hbar^2}{2m} \left(\frac{n_1^2}{a^2} + \frac{n_2^2}{b^2} + \frac{k^2}{\pi^2} \right). \tag{9}$$

В зависимости от того, является ли k действительным или мнимым, волновая функция, связанная с движением вдоль оси z, будет осциллирующей или экспоненциальной. Знак k выбирается в зависимости от направления движения частицы по отношению k $z = \pm \infty$.

Если k – мнимое, то в соответствии с нашей философией время, связанное с этой степенью свободы, становится мнимым, тогда как время, связанное с движением вдоль осей x и y, всегда остается действительным. В этих условиях при движении частицы вдоль оси z для нее не существует действительного времени. Течение мнимого времени вызывает затухание волновой функции, или к уменьшению плотности вероятности.

Хорошо известно, что в волноводе для волны данной моды i колебаний существует наименьшая возможная частота — критическая частота ω_i . Все моды с частотами меньше этого порога подавляются. Тогда можно утверждать, что распространение волны связано с ненулевым мнимым и нулевым действительным интервалами времени. Действительно, волна в волноводе может рассматриваться как когерентные колебания ансамбля фотонов. Уравнение Шредингера (7), где $2mE/\hbar^2$ заменено на ω^2 , подобно волновому уравнению Максвелла для волны в волноводе. При измерении течения времени извне волновода у людей создается иллюзия, что волна распространяется со сверхсветовой скоростью. Но здесь нет нарушения принципа относительности и превышения скорости света в вакууме. Происхождение иллюзии сверхсветовой скорости распространения связано с тем, что классически запрещенная область преодолевается за мнимое время. Это было подтверждено экспериментально [6] [7].

Интересно выписать фазовую скорость v_p и групповую скорость v_g волны в волноводе для частоты, превышающей пороговую (мы положили c = 1) [5]:

$$v_p = \frac{\omega}{k} = \frac{\sqrt{k^2 + \omega_i^2}}{k}, \quad v_g = \frac{d\omega}{dk} = \frac{k}{\sqrt{k^2 + \omega_i^2}}.$$
 (10)

В действительном времени групповая скорость, или скорость распространения сигнала, близка к нулю при частоте, близкой к пороговой. Однако при частоте ниже пороговой групповая скорость не имеет физического смысла, а скорость распространения сигнала стремится к бесконечности.

Из некоторых публикаций мы можем узнать, что иногда сигнал распространяется в пространстве со скоростью, в несколько раз большей скорости света. Точная кратность не имеет значения, поскольку она получается при усреднении бесконечной величины в зоне мнимого времени, тогда как в зоне действительного времени скорость равна 1 или меньше ее.

Я хотел бы предложить новый экспериментальный тест. Пусть при внутреннем отражении свет попадает на границу z=0 со стороны области z<0 оптически более плотной среды с показателем преломления n_1 в менее плотную среду с показателем преломления n_2 . Предположим, что свет распространяется в плоскости xz. Волновой вектор k удовлетворяет условию

$$k_{0x} = k_{1x} = k_{2x}, \ k_{1z} = -k_{oz} = -\frac{\omega}{n_1} \cos \theta_0, \ k_{2z} = \omega \sqrt{n_2^2 - n_1^2 \sin^2 \theta_0}.$$
 (11)

где ω — частота световых колебаний, θ_o — угол падения. Угол отражения θ_2 будет определяться условием

$$\frac{\sin \theta_2}{\sin \theta_0} = \frac{n_1}{n_2}.$$
(12)

Полное отражение достигается при $\theta_2 \ge 1$, тогда θ_2 и k_{2z} становятся мнимыми. Свет в менее плотной среде будет распространяться вдоль оси x и будет экспоненциально затухать вдоль положительного направления оси z. Так же, как и в случае волны в волноводе, затухание света вдоль оси z может рассматриваться как

распространение в мнимом времени, и наблюдатель установит, что прохождение света через среду 2 займет нулевое действительное время.

Итак, все утверждения о сверхсветовом распространении сигнала можно интерпретировать как движение частицы в области, запрещенной для ее нахождения там с классической точки зрения, происходящее в мнимом времени. Теории относительности это не противоречит.

Ссылки:

- [1]. R.Y. Chiao, Phys. Rev. A 48, R34 (1993). R.Y. Chaio, P.G. Kwait and A.M. Steinberg, Scientific American, 52, August 1993. R.Y. Chiao and J. Boyce, Phys. Rev. Lett. 73, 3383 (1994).
- [2]. G.W. Gibbons and S.W. Hawking, Euclidean Quantum Gravity, (World Scientific, Singapore, 1992).
- [3]. S.W. Hawking, Nucl. Phys. B239, 257 (1984).
- [4]. Zhong Chao Wu, The Imaginary Time in the Tunneling Process. (unpublished, 1995).
- [5]. L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).
- [6]. A. Enders and G. Nimtz, Phys. Rev. B 48, 632 (1993).
- [7]. A. Enders and G. Nimtz, J. Phys. I France 2 1693 (1992).