Улучшенная реализация теста одиночной частицы на неклассичность

Брида и др. (Италия, Швейцария, США)

Перевод Шульмана М.Х. (shulman@dol.ru)

arXiv:0811.3376v1 [quant-ph] 20 Nov 2008

Improved implementation of nonclassicality test for a single particle

Giorgio Brida¹, Ivo Pietro Degiovanni^{1*}, Marco Genovese¹,
Fabrizio Piacentini¹, Valentina Schettini¹, Nicolas Gisin²,
Sergey V. Polyakov³, and Alan Migdall³

¹Istituto Nazionale di Ricerca Metrologica,
Strada delle Cacce 91, 10135 Torino, Italy

²Group of Applied Physics, University of Geneva,
CH-1211 Geneva 4, Switzerland

³Optical Technology Division,
National Institute of Standards and Technology,
100 Bureau Drive, Gaithersburg,
MD 20899-8441 and Joint Quantum Institute,
Univ. of Maryland, College Park, MD 20742

*Corresponding author: i.degiovanni@inrim.it

Недавно в работе [R. Alicki and N. Van Ryn, J. Phys. A: Math. Theor. 41, 062001 (2008)] был предложен тест неклассичности для одиночного кубита. Мы представляем улучшенную экспериментальную реализацию этого теста, дающую уровень нарушения классичности в 46 стандартных отклонений. Этот фактор на 5 единиц улучшает наш предыдущий результат, что достигнуто за счет смещения из инфракрасной области в видимую, где мы получаем преимущество благодаря более высокой эффективности и меньшего шума в фотонных детекторах.

PACS numbers: 03.65.Ta

ВВЕДЕНИЕ

Простой тест неклассичности на уровне одиночного кубита был предложен в [1, 2], чтобы показать, что некоторые квантовые состояния в двумерном гильбертовом пространстве не могут быть классичными. Этот тест представляется очень привлекательным благодаря его простоте сравнительно с другими тестами на квантовость (см. [3] и содержащиеся там ссылки) и полезным средством для различных приложений в области квантовой информатики, фундаментальной квантовой оптики, оснований квантовой механики и т.д.

Поскольку речь идет о тесте для одночастичных состояний, вопрос о нелокальности здесь не поднимается, скорее это более фундаментальный тест на неклассичность в соответствии с возможностью некоторой теории скрытых параметров (hidden variable theory – HVT). Далее, мы понимаем, что он неприменим к любой мыслимой теории с неравенствами Белла, а только к ограниченному классу HVT [4]. Заметим также, что точная идентификация этого класса и вопрос о том, отображается ли он на какую-либо физическую систему вообще еще подлежит

исследованию. Еще один вопрос относительно такого теста был поднят Жуковским [5], который предположил, что критерий классичности Алицкого эквивалентен теореме фон Неймана.

Критерий классичности в модели Алицкого суммируется в следующем утверждении: для некоторой пары наблюдаемых \widehat{A} и \widehat{B} , которые удовлетворяют условию

$$\langle \widehat{B} \rangle > \langle \widehat{A} \rangle > 0$$
 (1)

для всех состояний системы, всегда должно быть справедливо соотношение

$$\langle \widehat{B}^2 \rangle > \langle \widehat{A}^2 \rangle.$$
 (2)

Однако для квантовых систем можно найти пары наблюдаемых \widehat{A} , \widehat{B} таких, что минимальное собственное значение $\widehat{B}-\widehat{A}$ (минимизированное по всем возможным состояниям) больше нуля, в то же время для некоторых квантовых состояний

$$\langle \widehat{B}^2 \rangle < \langle \widehat{A}^2 \rangle.$$
 (3)

Эта значительная разница между классичностью и неклассичностью в модели Алицкого может быть экспериментально протестирована на уровне одиночного кубита [4].

Одна возможная пара операторов $\>\widehat{A}\>$ и $\>\widehat{B}\>$ имеет вид [4]

$$\widehat{A} = a \frac{1 + \widehat{Z}}{2} \tag{4}$$

$$\widehat{B} = b \frac{1 + r \cos \beta \widehat{Z} + r \sin \beta \widehat{X}}{2}, \qquad (5)$$

где \widehat{Z} , \widehat{X} — матрицы Паули. Чтобы обеспечить положительность \widehat{A} и \widehat{B} , мы предположим a > 0, b > 0 и 0 ≤ r ≤ 1 для действительных a, b и r.

Для нее справедливо, что если дано ${\langle \widehat{B} \rangle > \langle \widehat{A} \rangle}$, то, по крайней мере, может быть найдено одно такое состояние, что ${\langle \widehat{B}^2 \rangle < \langle \widehat{A}^2 \rangle}$ (т.е. что выполняется условие неклассичности Алицкого), минимальное собственное значение $\widehat{B} - \widehat{A}$ должно быть положительным, тогда как $\widehat{B}^2 - \widehat{A}^2$ должно быть отрицательным, по крайней мере, для одного собственного значения. Легко может быть показано, что эти условия соответствуют

$$\frac{1 - r^2}{2\sqrt{1 + r^2 - 2r\cos\beta}} < \frac{a}{b} < \frac{1 - r^2}{2(1 - r\cos\beta)}.$$
 (6)

В настоящей работе представлена вторая экспериментальная реализация теста Алицкого для одиночного кубита, последовавшая после описанной в публикации [4]. Использована упрощенная и более эффективная схема, обеспечивающая более сильное нарушение неравенства классичности (2) и делающая это с меньшей неопределенностью (5-кратное улучшение предыдущего результата).

ЭКСПЕРИМЕНТ

Квантовые объекты, которые мы использовали для данного теста, представляли собой линейно поляризованные одиночные фотоны $(|\Psi\rangle=\cos\psi|H\rangle+\sin\psi|V\rangle)$, формируемые источником маркируемых (heralded) фотонов, работающем на основе параметрического понижения частоты (parametric down conversion – PDC). Главное отличие данного эксперимента от предыдущего состояло в том, что на этот раз и маркируемый (heralded), и маркирующий (heralding) фотоны имели частоты в видимой части спектра, тогда как в прошлый раз маркируемый фотон имел длину волны, характерную для систем передачи данных (telecom wavelength) [4]. Это позволило нам использовать более эффективные и менее зашумленные системы детектирования, что значительно уменьшило погрешность эксперимента. Заметим также, что в этом эксперименте измерения двух операторов требовало ручного изменения угла волновых пластинок, а не переключения между двумя измерениями в автоматическом режиме, что является несущественным отличием.

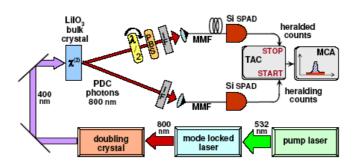


Рисунок 1: Экспериментальная установка.

Источник маркируемых одиночных фотонов на базе параметрического понижения частоты PDC генерирует пары фотонов с длиной волны 800 нм с помощью кристалла LilO $_3$, накачиваемого 400 нм лазером с синхронизированными модами. Подсчитываемые фотоны маркирующего плеча извещают о присутствии своих близнецов в маркируемом плече. Для отделения фона используются счетчик совпадений в PDC на базе преобразователя времени в амплитуду (Time to Amplitude Converter - TAC) и многоканальный анализатор (Multi Channel Analyzer - MCA). Маркируемые фотоны направляются на устройство измерения, предназначенное для оценки наблюдаемых $\langle \widehat{A} \rangle$, $\langle \widehat{A}^2 \rangle$, $\langle \widehat{B} \rangle$ и $\langle \widehat{B}^2 \rangle$.

Экспериментальное устройство изображено на рис. 1. Источник PDC представляет собой кристалл LilO₃ длиной 5 мм, накачиваемый светом с длиной волны 400 нм и генерирующий пары коррелированных фотонов с длиной волны 800 нм. Световой луч накачки получается удвоением частоты на выходе лазера с синхронизованными модами (mode-locked laser) с частотой повторения около ≈ 80

МГц, накачиваемого 532-нм лазером (pump laser). Два интерференционных фильтра (IF) со спектральной полосой пропускания (полная ширина на уровне половины от максимальной амплитуды) 20 нм расположены в маркируемом и маркирующем плечах, чтобы снизить вклад светового фона. Объективы микроскопов (20х) собирали свет в мультимодовые волокна (MMF), и в конечном счете фотоны подсчитывались кремниевыми однофотонными туннельными диодами (Si-Single-Photon Avalanche Diodes – Si-SPAD), работающими как счетчики Гейгера. В наших поляризационных проекционных измерениях использовались также полуволновая пластинка ($\lambda/2$) и поляризационный светоделитель (polarizing beamsplitter – PBS).

Для проверки природы одиночных фотонов нашего источника, которая критична для нашего теста, мы оценили возможность иметь более чем один фотон в маркируемом плече после детектирования маркирующего фотона. Для этого мы использовали ту же установку, что и в основном эксперименте (рис. 1), но мы подставили в маркируемое плечо мультимодовое волокно с интегрированным 50:50 светоделителем, которые направлял фотоны в два Si-SPADs. Параметр чистоты (purity) источника одиночных фотонов может быть описан посредством двух параметров $\gamma_1 = \theta(1)/\theta(0)$ и $\gamma_2 = \theta(2)/\theta(1)$, где $\theta(0)$, $\theta(1)$ и $\theta(2)$ — вероятности для маркируемого плеча сформировать 0, 1 или 2 отсчета для каждого маркирующего отсчета соответственно.

Таблица I

Теоретические и измеренные параметры источника в сравнении с идеальным источником одиночных фотонов и пуассоновским источником. Стандартные погрешности (указанные в скобках) учитывают как флуктуации счета, так и отклонения поляризаторов от идеального выравнивания.

Парамет источник		Идеальный источник одиночных фотонов	Без вычитания фона	После вычитания фона
$\theta(0)$	$\exp(-\tau\mu)$	1- au		
$\theta(1)$	$2[\exp(-\tau \mu/2) - \exp(-\tau$	μ)] τ		
$\theta(2)$	$1 - 2\exp(-\tau \mu/2) + \exp(-\tau \mu/2)$	$- au\mu)$ 0		
γ_1	$2[\exp(\tau \mu/2) - 1]$	au/(1- au)	0.0578(2)	0.0498(2)
γ_2	$[\exp(\tau \mu/2) - 1]/2$	0	0.0013(2)	0.0007(3)
γ_2/γ_1	1/4	0	0.022(3)	0.015(5)

В общем случае маркирующее детектирование извещает об "импульсе", содержащем n фотонов в маркируемом канале. Вероятность того, любой из Si-SPAD сработает для маркируемого оптического импульса, содержащего n фотонов, равна

$$\theta(0|n) = \sum_{m=0}^{n} (1 - \tau_A)^m (1 - \tau_B)^{n-m} B(m|n; p = 0.5) = \left(1 - \frac{\tau_A + \tau_B}{2}\right)^n, \quad (7)$$

где p представляет коэффициент светоделения в BS (p = 0.5), $B(m|n;p) = n![m! \ (n-m)!]^{-1}p^m(1-p)^{n-m}$ — биномиальное распределение, отвечающее расщеплению светового импульса из n, поступающих на два Si-SPAD, τ_A и τ_B — коэффициенты эффективности каждого Si-SPAD (что включает все

приемные и оптические потери в детектирующем канале). Аналогично, вероятности наблюдения 1 или 2 отсчетов вследствие маркируемого оптического импульса с n фотонами равны соответственно

$$\begin{split} \theta(1|n) &= \sum_{m=0}^{n} \{ [1-(1-\tau_A)^m](1-\tau_B)^{n-m} + (1-\tau_A)^m [1-(1-\tau_B)^{n-m}] \} B(m|n;p=0.5) \\ &= \left(1-\frac{\tau_A}{2}\right)^n + \left(1-\frac{\tau_B}{2}\right)^n - 2\left(1-\frac{\tau_A+\tau_B}{2}\right)^n \quad \text{, } \mathbf{M} \\ \theta(2|n) &= \sum_{m=0}^{n} [1-(1-\tau_A)^m][1-(1-\tau_B)^{n-m}] B(m|n;p=0.5) \\ &= 1-\left(1-\frac{\tau_A}{2}\right)^n - \left(1-\frac{\tau_B}{2}\right)^n + \left(1-\frac{\tau_A+\tau_B}{2}\right)^n \,. \end{split}$$

Отсюда мы получаем $\theta(0) = \sum_n \theta(0|n) \mathcal{P}(n), \ \theta(1) = \sum_n \theta(1|n) \mathcal{P}(n)$ и $\theta(2) = \sum_n \theta(2|n) \mathcal{P}(n)$ for $\mathcal{P}(n)$ - генеральное распределение вероятности числа фотонов в маркируемом оптическом импульсе. Предположив, что оба Si-SPAD имеют одинаковую эффективность ($\tau_A = \tau_B = \tau$), приводим в табл. І параметры для идеального источника фотонов ($\mathcal{P}(n) = \delta_{n,1}$) и пуассоновского источника ($\mathcal{P}(n) = \mu^n e^{-\mu}/n!$) при среднем числе μ фотонов импульсе. Сравнивая измеренные результаты с теоретическими значениями для двух типов источников, мы видим, что пока наш источник отличается от идеального источника одиночных фотонов, который испускает один фотон на импульс, очень маленькое отношение τ_2/τ_1 поддерживает вывод, что условный однофотонный выход доминирует на выходе нашего источника.

Математические ожидания $\langle \widehat{A} \rangle, \, \langle \widehat{B} \rangle, \, \langle \widehat{A}^2 \rangle, \, \langle \widehat{B}^2 \rangle$ могут быть получены экспериментально путем проектирования маркируемых фотонов на состояния линейной поляризации, поскольку операторы \widehat{A} и \widehat{B} могут быть записаны в виде

$$\hat{A} = a\hat{P}_0$$
 (9)

$$\widehat{B} = b \left(\frac{1+r}{2} \widehat{P}_{\frac{\beta}{2}} + \frac{1-r}{2} \widehat{P}_{\frac{\beta+\pi}{2}} \right), \tag{10}$$

где $\,\widehat{P}_{\! heta}\,$ - оператор проекции на состояние $\,|s(heta)
angle = \cos heta |H
angle + \sin heta |V
angle \, .$

Если мы примем значения параметров $a=0.74,\ b=1.2987,\ r=3/5,\ \beta=2/9\ \pi$ (заметим, что при этом выборе условие (6) выполняется) и $\psi=-11/36\ \pi$, то результаты для $\langle \widehat{B}^2 \rangle - \langle \widehat{A}^2 \rangle$ и $\langle \widehat{B} \rangle - \langle \widehat{A} \rangle$, предсказываемые квантовой теорией, будут такими, как указано в табл. 2, в то время как минимальное собственное значение $\widehat{B}-\widehat{A}$ равно $d_-=0.0189$ (удовлетворяя условию $\widehat{B}-\widehat{A}>0$, требуемому тестом Алицкого), где

$$d_{-} \equiv \frac{1}{2} \left\{ b - a - \sqrt{a^2 + b^2 r^2 - 2 \ a \ b \ r \ \cos \beta} \right\}. \tag{11}$$

Результаты теста на неклассичность. Стандартные погрешности (в скобках) учитывают флуктуации счетчиков, недостатки выравнивания. Вкладом в погрешность неидеальности поведения нашего источника одиночных фотонов мы пренебрегаем.

Величина	Измерение (в этой работе)	Измерение (в предш. работе	KM)
$\langle \widehat{B} \rangle - \langle \widehat{A} \rangle$	0.0701(15)	0.058(11)	0.0685
$\langle \widehat{B}^2 \rangle - \langle \widehat{A}^2 \rangle$	-0.0461(10)	-0.0403(66)	-0.0449
отклонение от классичности	$46.1~\sigma$	$9.4~\sigma$	

Экспериментальные результаты представлены в табл. II. Значение $\langle \widehat{B}^2 \rangle - \langle \widehat{A}^2 \rangle$ показывает очень большое нарушение, \approx 46 стандартных отклонений, от классического предела $\langle \widehat{B}^2 \rangle - \langle \widehat{A}^2 \rangle > 0$.

ЗАКЛЮЧЕНИЕ

Представлена очень простая и эффективная экспериментальная реализация предложенного Алицким теста на неклассичность, результаты которого с большим (46.1 стандартных отклонений) и низким шумом свидетельствуют о нарушение условия классичности Алицкого. Это 5-кратное улучшение нашего предшествующего результата было достигнуто смещение из инфракрасной области в видимую, где мы получаем преимущества в силу высокой эффективности и малого шума детекторов фотонов.

БЛАГОДАРНОСТИ

Эта работа была частично поддержана Regione Piemonte (E14), San Paolo Foundation и MURI Center for Photonic Quantum Information Systems (Army Research Office (ARO)/ Intelligence Advanced Research Projects Activity (IARPA) программа DAAD19-03-1-0199), программы запутанных источников IARPA. N. G. частично получил поддержку от Swiss NCCR-QP.

ССЫЛКИ

- [1] R. Alicki and N. Van Ryn, "A simple test of quantumness for a single system," J. Phys. A: Math. Theor., 41, 062001 (2008).
- [2] R. Alicki, M. Piani, and N. Van Ryn, "Quantumness Witnesses," arXiv:0807.2615v1 (2008).
- [3] M. Genovese, "Research on hidden variable theories: A review of recent progresses," Phys. Rep. 413, 319-396 (2005).

- [4] G. Brida, I. P. Degiovanni, M. Genovese, V. Schettini, S. V. Polyakov, and A. Migdall, "Experimental test of nonclassicality for a single particle," Opt. Express 16, 11750-11758 (2008).
- [5] M. Zukowski, "Unexpected reemergence of von Neumann theorem," arXiv:0809.0115v1 (2008).