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Abstract—This paper proposes a generalization of the dependence for the entropy of “ordinary” massive
bodies with a relatively small entropy of the event horizon of the covering surface to the case of black
holes (BH). By doing this, the nature of the famous Bekenstein bound, that is, the universal limit for
entropy, is immediately explained and corrections to the values of the “gravitational” surface temperature
are determined for the entire spectrum of astrophysical objects.

Keywords: black hole, entropy, temperature, density, thermodynamics, surface gravity, gravitational
collapse, Bekenstein limit, Hawking temperature, Unruh temperature, action at a distance.

DOI: 10.3103/S0027134920050070

INTRODUCTION

In the early 1970s, a group of relativistic cosmol-
ogists made a revolutionary breakthrough in under-
standing BH thermodynamics [1]. Based on Hawk-
ing’s result on the nondecreasing absolute event hori-
zon, Bekenstein [2] identified the BH entropy with
the surface area of this horizon. Even earlier, first
Zeldovich [3], and much later, Hawking himself [4,
5], contrary to his initial ideas, showed that a BH
should radiate as a black body with an appropriate
temperature. The rest of the cosmological community
accepted these ideas gradually and with great doubt.

According to Bekenstein [6, 7], the enormous en-
tropy of a BH occurs because the state of a BH does
not provide information about the system, by which
growth it was formed. The BH entropy is considered
the maximum possible value of entropy for objects of
a given mass, that is, the Bekenstein bound, although
this statement has never been rigorously proved.

Physicists usually perceive the thermodynamics
of BHs with the colossal entropy inherent to them
as something exotic that has no analogy with the
thermodynamics of ordinary objects. In this paper, we
show that a “smooth” transition from gravitationally
conditioned thermodynamics of “ordinary objects” to
black holes is possible, and substantiate the famous
Bekenstein bound: it does actually give an upper
bound for the entropy of a gravitating object.

The entropy of an ordinary macroscopic body in
many cases can be found from the thermodynamic
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formulation, when macroscopic rather than micro-
scopic state parameters are used [8–11]. This is the
reason for state uncertainty. The specific microstate
of the body is unknown, and it does not always exist
for a long period of time.

The interactions between mutually distant parts of
a macroscopic system, for example, molecules in a
drop of water or in a vessel filled with gas, can often be
discarded, because intermolecular forces are short-
range in nature. The entropy of such systems consists
of the entropy of all its subsystems, in other words, it
is additive in volume, that is, an extensive quantity.
In particular, let us split a body in equilibrium into
macroscopic subsystems for which the equilibrium
temperature has the same value T . Heat energy
Emacro is

Emacro = T
∑

V

ΔSi = TSmacro,

where ΔSi is the volume entropy of the ith subsys-
tem and Smacro is the entropy of a macroscopic body,
which is additive in volume.

However, not all systems can be described by con-
ventional Boltzmann thermodynamics, for example, a
sufficiently large interstellar dust cloud or a similar
large cosmological object. If we split the cloud into
imaginary parts, then these parts will interact not
along interfaces, but via entire volumes, that is, each
part will “sense” the entire system as a whole, all
its other parts. For this reason, for example, ther-
modynamic additivity is badly violated in gravitat-
ing systems: such a system cannot be divided into
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approximately independent subsystems. Entropy in
such systems is not additive in volume.

Nevertheless, the sources of the gravitational
field have similar properties to the above-described
“macroscopic” systems. In particular, they can
be described by choosing macroscopic parameters
similar to the concepts of temperature and entropy.
Moreover, these new thermodynamic parameters ef-
fectively translate into parameters used in the limiting
case for gravitational objects such as BHs.

So, what are the nature and properties of the en-
tropy of gravitating objects? Verlinde suggested that
a relationship between gravity and entropy may exist
for “ordinary” massive bodies far from gravitational
collapse, and not only for BHs [12]. For each such
body, he introduced the concept of a hypothetical
spherical screen that surrounds this body and carries
information about it and suggested that the forces of
gravity are not fundamental, but secondary in nature,
determined precisely by the magnitude of the entropy
gradient that arise when the radius of the hypothetical
screen changes. As a result, Verlinde concluded that
the entropy S and the area A of the sphere bounding
the body are directly proportional.

However, the assumption about the presence of
such a “virtual” screen carrying information does not
seem to be justified (see, in particular, the interesting
article [13]). On the other hand, the undoubted con-
nection between gravity and entropy is not necessarily
due to the primary nature of entropy. For example,
the authors of [14] show that another point of view
is valid: the thermodynamic state equation is derived
from the equations of the gravitational theory.

1. THE ENTROPY OF AN OBJECT
WITH GRAVITATIONAL INTERACTION

BETWEEN ITS PARTS

We contrast the Verlinde hypothesis with the op-
posite statement: it is not entropic forces that are
primary, but gravitational forces, and the gravitational
field should create conditions for the arising of entropy
gradients not only in the case of BHs, but also in the
case of “ordinary” massive bodies.

In 1687 Isaac Newton published the popular “shell
theorem” [15], according to which “a spherically
symmetric body affects external objects gravitation-
ally as if all its mass were concentrated at a point
at its center.” This causes macroscopic uncertainty:
the gravitational force acting on the test body at a
distance r from the center of mass of a homogeneous
and symmetric source of gravitation does not depend
on how the mass M of the source is distributed within
an imaginary sphere of radius r. (It is clear that
“ordinary” bodies rarely possess perfect symmetry
and homogeneity. Deviations from homogeneity and

symmetry can lead to a shift in the position of the
center of mass and “deformation” of closed equipo-
tential surfaces of the gravitational field compared
to the spherical case, but these effects can usually
be discarded at distances from the center greater
than several diameters of the body.) However, such
uncertainty is associated with the appearance of
entropy when different configurations of subsystems
correspond to the same “macroscopic” description of
the system for an external observer.

Let us introduce the main parameters of an object
that is a source of gravity with mass M and radius r
of an imaginary spherical shell bounding it.

The mean density ρ of matter in the object:

ρ =
3M

4πr3
. (1)

The surface gravity κ, i.e., the magnitude of the
gravitational acceleration experienced by a small test
particle on a conditional outer spherical bounding
shell:

κ =
GM

r2
=

4πGρr3

3r2
=

4πGρr

3
, (2)

where G is the gravitational constant. Relation (2)
defines nothing other than, for example, the accelera-
tion of a particle in the gravitational field of the planet.

The surface temperature (in ergs) Θ = kBT on a
certain outer spherical bounding shell, or the total
energy of the body, related to the area A of the shell
surface:

Θ = kBT =
Mc2

A
=

Mc2

4πr2
=

GM

r2
c2

4πG
= κ

c2

4πG
.

(3)

Here, kB = 1.38 × 10−16 erg/deg is the Boltzmann
constant, and T is temperature in K.

As can be seen from (2) and (3), gravity and sur-
face temperature are proportional to each other. Since
the Planck length lp = 1.6× 1033 cm can be written
as:

lp =
√

�G/c3,

where � is the reduced Planck’s constant, then rela-
tion (3) can be reduced to the form that will be used
further:

T = κ
c2

4πGkB
= κ

�c2/c3

4π(�G/c3)kB
=

�κ

πckB

1

4l2p.
(4)

The last parameter is the entropy of the gravity
source. When analyzing it, it is important to keep
in mind the following circumstance. Just as for a
“macroscopic” system in equilibrium, we assumed
the volume temperature T to be the same for all its
subsystems, in this case, based on the shell theo-
rem, we assumed its surface analogue T to be the
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same for each area of the surface A of the sphere.
At first glance, this thesis seems trivial. However,
in this regard, it is appropriate to recall the “hoop
conjecture” [1], a definite alternative to the Newtonian
shell theorem: the imploding object forms a BH if
and only if this object can be entirely placed in the
critical sphere, when it is possible to “place a hoop”
around the object. Consequently, in the case of an
insufficiently compact and symmetric object, a state
with the same surface temperature may not exist.
However, if it is possible to surround the object with
a sphere, then, according to (3) and the simplified
expression

dE =
E

A
dA = TdA,

the area of a sphere plays the role of entropy up to
a coefficient and the total entropy corresponding to
such a sphere is additive with respect to the surface
of the sphere, i.e., it is the sum of the values of the
entropies of partial areas on the sphere surface.

Finally, following Bekenstein’s example, we con-
sider the fall of a test particle on a gravitational field
source. We suppose that a test particle crosses an
imaginary sphere of a certain radius r, surrounding
the source, which is not a BH in this case. For
another test particle outside this sphere, it looks as if
the mass of the source has increased due to the first
test mass and, accordingly, the number of possible
configurations of the mass distribution inside this
sphere has increased. That is, the first test mass
brings the entropy associated with it into the sphere,
which exactly resembles the situation with a black
hole.

2. BH AND THE BEKENSTEIN BOUND

Thus, as noted in Section 1, in the first half of the
1970s, a chain of events took place that led to an
understanding of BH thermodynamics, in particular
to Zeldovich’s and later Hawking’s idea of BH radi-
ation as if its event horizon had a finite temperature
proportional to the BH surface gravity. Bekenstein
established that a BH should have enormous entropy
S0 proportional to the area A0 of its bounding sphere,
that is, the event horizon [2]:

S0 =
A0

4l2p
.

We present the expressions for ρ0, κ0, and Θ0 =
kBT0, written precisely for a BH of mass M , the
gravitational Schwarzschild radius of which, as we
know, is equal to [16]

R0 =
2MG

c
2 .

The critical density ρ0 of matter in the collapsed
object:

ρ0 =
3M

4πR3
0

. (5)

The surface gravity κ0, i.e., the magnitude of the
gravitational acceleration at the BH event horizon is

κ0 =
GM

R2
0

=
4πGρ0R0

3
. (6)

The surface temperature Θ0 = kBT0 at the BH
event horizon:

Θ0 = kBT0 = κ0
c2

4πG
. (7)

Comparing formulas (1)–(3) and (5)–(7), we see
that

ρ

ρ0
=

R3
0

r3
,

κ

κ0
=

T

T0
=

R2
0

r2
.

We note that formula (2) implies the existence of
acceleration κ for a test particle in the gravitational
field of an arbitrary object. Due to the equivalence
principle, this immediately implies the Unruh effect
[17], that is, the existence of thermal radiation with
the corresponding temperature T (see (4)) in the ac-
celerating frame of reference, and the acceleration κ
itself is identified with the Unruh acceleration.

Although the Unruh effect is usually associated
with the quantum theory of a vacuum, our case did
not require it. It is sufficient to account for the simple
fact that an accelerated charge in the space surround-
ing the source of gravity always radiates, drawing
energy from the gravitational field. Moreover, at the
BH event horizon the acceleration κ and the Unruh
temperature T become the acceleration κ0 and the
Zeldovich–Hawking temperature T0.

3. UNIFYING DESCRIPTIONS
OF AN “ORDINARY” BODY AND A BH

Above, we obtained for the entropy of an arbitrary
gravitation source the same proportionality to its sur-
face area, and not to volume, as for a BH. A similar
result was obtained by Verlinde for the entropy of the
holographic horizon, but this led to a fundamental
paradox, which Verlinde himself noted: if the propor-
tionality coefficient for an “ordinary body” is taken the
same, then the entropy of a BH turns out to be much
less than the entropy of an ordinary body, since the
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Table 1. The ρ/ρ0 ratio for various astrophysical objects

Object Mass M , kg Radius r, m Gravitational (ρ/ρ0) = (R0/r)
3 (κ/κ0) = (Θ/Θ0) = (R0/r)

2

radius r0, m

Earth 6× 1024 6× 106 10−2 ∼ 10−26 ∼ 10−18

Sun 2× 1030 7× 108 3× 103 ∼ 10−16 ∼ 10−10

Milky Way 3× 1042 ∼ 1019 ∼ 1015 ∼ 10−12 ∼ 10−8

Universe ∼ 1053 ∼ 1026 ∼ 1026 ∼ 1 ∼ 1

gravitational radius of this body for a given mass M
until collapse is much less than the actual one!

What causes this paradox? The fact is that we ac-
tually used a relation of the following form when cal-
culating the temperature of the gravitational source

1

Θ
=

(
∂S

∂E

)

V

,

where the derivative of entropy S with respect to en-

ergy E is calculated at constant volume V [18]. How-
ever, we are considering the process of approaching
collapse of a body of a given mass M , characterized
by a changing density ρ = M/V , and this change
cannot be considered small. In this case, we must
also consider the change in volume in the expression
for temperature Θ. This can be done by introducing
a certain factor depending on the value (ρ/ρ0). Ex-
panding this factor in a series in powers of this value,
we restrict ourselves to the first-order term; in fact,
we equate this factor to this value itself. This clearly
does not change anything for a BH, but for an “ordi-
nary” body, for example, an astrophysical object, it re-
duces this entropy by many orders of magnitude (see
Table 1).

We also note that usually the factor 1/4l2p is also
“transferred” from the expression for temperature to
the expression for the surface area A of the bound-
ing sphere, thus making the entropy dimensionless.
Therefore, we propose the following final formula for
the gravitational entropy

S ≈ ρ

ρ0

A

4l2p
.

The approximation sign occurs due to our restrict-
ing ourselves by the first order of the power expansion.

CONCLUSIONS

Let us sum up this work; for any massive particle,
an entropy gradient arises naturally, directed along
the radius of the gravitational field. In this sense,

the connection between the “fundamental” force and
entropy is not at all a privilege of gravitational interac-
tion, therefore, Verlinde’s concept seems untenable.

The unification of the entropy expression for ordi-
nary objects and BH using formula (3) is based on
the linear approximation of an unknown exact depen-
dence on (ρ/ρ0) and makes it possible to describe
both the “ordinary” states of massive bodies with
a relatively small entropy of the imaginary horizon
of the bounding surface, and the state of BH with
huge entropy on the event horizon. By doing this,
the nature of the famous Bekenstein limit, the uni-
versal limit for entropy, is immediately explained and
substantiated, and corrections to the values of the
“gravitational” surface temperature are determined
for the entire spectrum of astrophysical objects.
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