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Abstract 
 

Some phenomena emerging while one approaches immediately to the collapse of a sphere 
that has a finite size and consists in perfect fluid are considered.  

 
1. Introduction 
 

An analyzis of the gravitational collapse is often based on the assumption that a 
collapsing object has a real size (much) less than its gravitational radius (i.e. is considered as  
a material point). This can lead to the loss of several important and very interesting details and 
may become inapplicable.  

We use the Schwarzschild’s solution for the material uniform sphere problem [Tolman, 
1934]. Such a sphere has a radius r1and a density ρ, and consists in perfect fluid. The 
analytical description is represented in the Appendix while the main text uses the graphical 
dependencies on a current radius r. The dependencies are specified by a curvature radius R 
(or by a corresponding density value) as parameter.     

.  
2. Evolution of the metric tensor component G00 
 

In the General Relativity (GR) the metric tensor component G00 is like to the gravitation 
potential in the Newton’s gravitation theory. Let us consider this dimensionless quantity as it 
approaches to the collapse. Graphically it is presented in the range 0 ≤ r/r1 ≤  1.1 .   

If the situation is far from the collapse (the measure is specified by a ratio R/r1 or ρ/ρ0), 
the curve increases monotonically (see Fig. 1).  

 

 
 

Figure 1. The distribution of G00 far from the collapse 
 
However, as one approaches to the collapse (at 1 ≤ R/r1 ≤ 3/2√2) the monotonic behavior 

of the dependence is changing: the additional extremum appears (Fig. 2). The initial part of the 
curve “bulges” up having a maximum at the center of the sphere, while a new minimum 
appears inside of the sphere. When one approaches to the collapse, the minimum drifts to the 
sphere bound. 
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Figure 2. The distribution of G00 when the additional extremum appears 
 

Finally, at the collapse state this minimum transforms to the jog localized just on the sphere 
bound (Fig. 3).  

 

 
 

Figure 3. The distribution of G00 when the collapse is realized 
 
3. Evolution of the pressure P inside the sphere 

 
Let us consider now the pressure’s behavior. It strictly positive far from the collapse and 

decreases down to zero monotonically from the center of the sphere to the bound (Fig. 4). 
 

 
 

Figure 4. The distribution of the pressure far from the collapse 
 
As well as one approaches to the domain of the additional extremum component G00 

existing the pressure distribution irregularity increases as it was “flattened” at the central region 
of the sphere (Figs. 5a and 5b).  
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a) 

 

 
b) 

 
Figure 5. The distribution of the pressure near collapse  
when one extremum (minimum) of the G00 exists only 

 
The very different situation is observed more close to the collapse after appearing the 

second G00’s extremum, i.e., at 3/2√2>(R/r1)>1. The “unidirectional pulse” of the pressure 
having a finite value transforms to the bidirectional break of the function, its left side (before 
the break) becomes to be negative, while the right side (after the break) becomes to be 
positive (fig. 6a). At the break point the function value is not defined (the value is ± ∞). 

So, yet before collapse, but near its boundary R/r1 = 1, we observe a new phenomenon, 
which consists in negative pressure. This one does not represent something unknown for 
physics. A pressure is positive at usual conditions, i.e. it is directed as a body was 
“compressed” and hence is going to enlarge. However, it is not obligatory, a body may also be 
in a state with a negative pressure. In such a state a body seems to be “extended” and going 
to compress. For example, a superheated liquid can be at a negative pressure; such a liquid 
operates to its boundary surface with a force directed inside of its volume. In our case the 
negative pressure may be due to a volume “enlarging”, because the metrics changes. 

In this range of conditions, while one approaches to the collapse mode the break point 
position is clearly shifting to the bound of the sphere from its center. The initial pressure is 
negative and approaches to the value –3, and the bound pressure is always zero. At the 
collapse mode (R/r1 = 1) the pressure at the sphere bound becomes to be unidentified (0/0). 
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a) 

 

 
b) 

 

 
   c) 

 

 
d) 
 

Figure 6. The transition from a finite unidirectional pressure pulse to the noncontinuous 
behavior after the second extremum (minimum) of the component G00 appears. The shifting 
of the pressure break point to the sphere bound while one approaches to the collapse mode. 
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4. Conclusion  
 
In the present work we have seen that the collapsing object real size account allows us to 

reveal some new and important details of this physical phenomenon. Particularly, when a real 
body size is a little more than its gravitational radius, the metric tensor component G00 plot gets 
the additional extremum that transforms to the to the jog localized just on the sphere bound 
when the both sizes become equal. The pressure remainds to be zero outside from the sphere 
and close to the collapse obtains an infite bipolar rupture. While one approaches to the 
collapse condition, this rupture is displacing beyond the sphere bounds. 

It should be noted that the matter pressure plays a very important role in this model while 
in the model of a point mass collapse one does not account this role at all. This difference is 
important when one analyzes the cosmological problem (see [Shulman, 2007] and [Shulman, 
2006]). 

 
Appendix 

 
1. Basic Relationships 

 
The book [Tolman, 1934] describes the Einstein’s equation solution that was found by 

Schwarzschild in the metrics 
 

ds2 = G00 dt2 – r2 (dθ2 + sin2θ dϕ2) – dr2 / (1 – r2/R2). 
 
One means that a sphere consisting in the perfect fluid having a density ρ has a radius r1 and 
is surrounded by an “empty” space.  

The Schwarzschild’s solution represents two functions: metric tensor component G00(r) 
(that corresponds to the Newton’s gravitational potential) and pressure P(r). In this solution 
one uses the sphere radius r1, a current radius r and the curvature radius R: 

  
R2 = 3с2/ (8πGρ) 

 
Since the gravitational radius RG of such a sphere is 

 
RG = 2GM/с2 = 2 (4πr1

3Gρ)/(3с2) = r1
3 /R2 

 
then R is univocallly connected with the gravitational radius RG and a the sphere radius r1 by 
the ralation 

RG/r1 = (r1/R) 2 
 
Also, since at the collapse we have RG = RG = r1, then 
 

1 ≥ (ρ/ρ0) = RG
2/R2 = (r1

6/R6)  
 
where ρ0 is the density corresponding to the collapse (i.e. to the condition RG = r1). 

The The Schwarzschild’s solution is given by the dimensionless relationships 
 

G00 = ( 22
1 /1

2
3 Rr−  - 22 /1

2
1 Rr− ) 2 

and 
(P/P0) =  Ф(r, r1, R), 
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where P0 = ρ0с2/3, and the function Ф(r, r 1, R) is 

 

22
1

2
1

2

1
)/(1)/(13

)/(13)/(13
),,(

RrRr

RrRr
Rrr

−−−

−−−
=Φ  

 
2. Specification of the evolution of G00(r, r1, R) 
 

It is easy to see that G00 is always non-negative and its initial is determined by 
 

G00 (r1 = 0) =  9(1 – r1
2/R2) / 4 

 
Furthermore, its derivative is equal to:  
 

(dG00 /dr) =   ( 22
1 /1

2
3 Rr− – 22 /1

2
1 Rr− ) r / (2R2 22 /1 Rr− ) 

 
At r = 0 we have (dG00 /dr) = 0, and at r = r1 (more precisely, at r = r1 – 0) we find  
 

(dG00 /dr) = r1/R2 
 
It is well known that there exists usually one extremum (minimum at r = 0) of the 

function G00(R/r1). However, it turns out that before collapse the function behavior changes, 
and the additional extremum appears. In fact, the equation (dG00 /dr) = 0 is equivalent to the 
condition  

9(1 – r1
2/R2) = 1 – r2/R2 

or 
r/R = 8/9 22

1 −Rr . 
 
Hence, the additional real extremum appears in the condition range  

 
3/2√2 > (R/r1) > 1 

 
In this case the second internal extremum becomes to be mimimum, and the first 

minimum at r = 0 is now the local minimum. This internal minimum1 transforms at the collapse 
to the jog of G00 localized just on the sphere bound, when the derivative changes its sign, i.e.,  
(dG00 /dr) = - r1/R2. Really, in the external region the expressions under all radicals will become  
negative ones, so finally the derivative will be multiplied by the imaginary unit square (–1). 

The initial value (at r = 0) of the component G00 is always 
 

G00 init = ( 22
1 /1

2
3 Rr−  - 

2
1 ) 2  

and a boundary one (at r = r1) is 
G00 bound = 1 – r1/R 

                                                           
1 It is interesting to compare this fact with the statement from [Novikov and Frolov, 1989]: “The condition r = 3RG 
corresponds to the critical circular orbit that separates a stable motion from an unstable one. … At this the system 
energy is Е = 9/8 …” 
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3. Specification of the evolution of P(r, r1, R) 
 

In order to analyze the function Ф(r) behavior it is suitable to represent it in a more 
compact form 

Ф = 3(x – z)/(3z – x) = – 3(x – z)/(x – 3z), 
 
where x is first radical of the numerator depending on the variable (r/R), and z is second 
radical depending on the parameter (r1/R) which indicates a distance from the collapse. The 
function Ф sign depends on the relation between x and z:  
 

 
 
 
 
 
 
 
Clearly, there is the rupture of the function Ф(r) at the point x = 3z: the function has the 

infinite values of the opposite sign at different sides of this point. This rupture point position 
(r/R) is determined by the condition 
 

9(1 - r1
2/R2) = 1 - r2/R2 

i.e., by the known condition 
r/R = 8/9 22

1 −Rr , 
 
that leads to the additional extremum of G00 existence. 

The initial value (at r = 0) of the pressure P is always 
 

Фinit(r, r1, R) = 
1)/(13

)/(133
2

1

2
1

−−

−−

Rr

Rr
 

and a boundary one (at r = r1) is 
 

Фbound(r, r1, R) = 0
)/(12

0
)/(1)/(13

)/(13)/(13
2

1
2

1
2

1

2
1

2
1 =

−
=

−−−

−−−

RrRrRr

RrRr
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relation between  
x and z 

Sign of Ф 

0 < x < z Ф (x) < 0 
z < x < 3z Ф (x) > 0 

x > 3z Ф (x) > 0 


