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I consider three approaches to the Heisenberg’s uncertainty principle: the 

Copenhagen interpretation, the Bohmian interpretation, and one new approach where a 
particle is presented as the oscillator. 

. 
1 The Copenhagen interpretation  
 

The uncertainty principle is one of cornestones of quantum mechanics. Firstly its 
proof was published by W. Heisenberg which started (see [Jammer, 1967]) from the 
simplified representations: he suggested that a particle position q is distributed around 
its averaged value accordingly with the Gauss error curve. Then the particle momentum 
p should also be distributed around its averaged value by the same manner, and the 
uncertainties product δqδp is ħ/2, i.e., the more precisely a position is determined, the 
less precision is specified for momentum, and vice versa. W. Heisenberg saw in this the 
indirect clear interpretation of the basic commutation relationship pq – qp = ħ/2i.  

Later Robertson showed (see [Jammer, 1967]) that one can formulate the general 
uncertainty principle for any two non-commutating operators having the commutator iħ. 
He proved that for a given normalized wave function and two given Ermitian operators A 
and B the inequality like ΔAΔB ≥ ħ/2 can be establish. 

John von Neuman reproduced this proof in his famous book [von Neuman, 1932]. 
He had in mind the quantum observable operators that are specified in principle by 
unavoidable measurement inaccuracy1. He stated that measurement effect to its issue 
just made the quantum theory (the wave function reduction) purely statistical and 
acausal, causes non-zero dispersion in the quantum observables ensemble distribution 
and excludes any possibility of the determinism recovering using any “hidden variables”. 
Note that von Neuman pointed out to the purely imaginairy commutator type of two 
arbitrary Ermitian operators.  

On the other hand, Heisenberg hi-self investigated the physical roots of his famous 
principle. Hi stated that measurement as such destroys the “true” picture; the more 
precisely a position is determined, the more a measurement device violates  the “true” 
rmomentum value. In the textbook [Feynman et al., 1963] the uncertainty principle is 
interpreted accordingly the wave packet representations – this packet can be found in 
the certain range q±∆q only. The uncertainty for such the packet is linked with the fact 
that its momentum is inversely proportional to the wavelength; however, a short wave 
packet is the sum of a number of different harmonics, and its exact wavelength cannot 
be well determined. 
 
2 The Bohmian interpretation and the weak measurements 
 

In 1952 David Bohm formulated ([Bohm, 1952]) that the von Neuman’s statistical 
hypothesis is not true, and a “hidden variable” exists”2: it is the wave function phase 
which in principle allows us to talk about a quantum particle individual trajectory and 

                                                           
1
 In the Section 3 it is shown how one can interpret the uncertainty relationship deterministically having in 

mind the averaging over a very small oscillation time period. 
2
 Later John Bell showed that this does not contradict to the von Neuman’s statement, if a “hidden 

variable” is not local. 
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velocity. Accordingly to Bohm’s opinion one can (at least, by calculation) determine 
simultaneously and with arbitrary accuracy its position and momentum.  

In 1988 Y. Aharonov, D. Albert, and L. Waidman proposed the idea of so-called 
“weak”   quantum measurements. Let us measure (accordingly Heisenberg’s principle) 
very “roughly” one of two variables. One can “overcome” this, if he performs a number 
of measurements (at a given initial and final conditions) and then averages the results. 
In this case the inaccuracy is decreased proportionally to the square root from the 
measurements number. Then the accuracy overcomes the theoretical limit due to the 
Heisenberg’s relationship. It was recently performed experimentally (see [Dixon et al., 
2009], [Jeff et al., 2011], [Hosten and Kwiat, 2008], [Kocsis et al., 2011] [Popescu, 
2009]). 

Though the amount of the publications of the Bohm’s ideas and weak 
measurements followers increases continuously, do we can talk that the Heisenberg’s 
relationship and quantum mechanics statistical interpretation became “obsolete”? In my 
opinion, this is not the case. In the both Copenhagen and Bohm’s interpretations we 
deal with some kind of individual history particle evolution averaging: It is true for weak 
measurements by definition; for Bohmian interpretation one can see this from the formal 
analogy between his approach and the “probabilistic” fluid theory: 

 
 “Consider a (classical) fluid. It consists of many different particles (e.g., atoms, 
ions, molecules, etc.), all the degrees of freedom being described by a set of 
differential coupled equations, with as many equations as degrees of freedom are 
involved. If one is not interested in the microscopic description of the fluid, but in a 
macroscopic one, equations like the Euler or Navier-Stokes ones will be rather 
used, which describe phenomenologically the evolution of a continuous fluid 
without paying any attention to the particular (microscopic) dynamics of its 
constituents. This is essentially the basis of classical hydrodynamics.   …  Thus, 
individual real quantum particles behave like individual point-like particles, though 
their distributions display wave-like behavior, in accordance with Schrödinger’s 
equation or its Bohmian equivalents. Hence, it is clear that ensemble properties 
need of an ensemble description, i.e., a density distribution function, whose role is 
played by the probability density in quantum mechanics or, at a more elementary 
level, the wave function. This is in agreement with Born’s statistical interpretation 
of quantum mechanics. … if the Bohmian equations are understood as 
hydrodynamic equations, the trajectories obtained from can (should) not be 
regarded necessarily as the trajectories pursued by real particles, but rather as the 
streamlines associated with the associated quantum fluid.” [Sanz and Miret-
Artés, 2011]. 

 
See also the publication [Sanz, 2012] where these streamlines are identified as 

the lines of the mass/energy transport (that never cross in configuration space and form 
the “probabilistic tubes” with non-transversal boundaries); they are not the individual 
particle trajectories! Thus, the Bohm’s model that is mathematically equivalent to the 
“diffusional” Shrödinger’s equation cannot (and does not) describe any chaotic 
(“Brownian”) motion of each individual particle; it gives averaged (collective) motion 
description only. 
 
3 The uncertainty relationship and a particle model as the elementary oscillator 
 

The concept of “quantum particle” is usually associated with its image as a 
material point that could be specified by real values of its position and momentum. 
However, this concept was destroyed by quantum mechanics founder – Heinsenberg  
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him-self. He introduced (see [Jammer, 1967]) a quantum particle  position and 
momentum as infinite serie of complex valued harmonics. He also introduced several 
limitations for these quantities multiplication rules (identical with the rules for matrix) 
from what he deduced all the rest. Do we can found some clear physical interpretation 
of such the mathematical scheme based on the classical theory?   

In my book [Shulman, 2004] I proposed consider a quantum particle model as 
complex valued oscillator. From the mathematical viewpoint this completely 
corresponds with the Heisenberg’s approach. From the physical viewpoint this explains 
the representation complication about particle position and trajectory, about physical 
quantities commutation and their simultaneous measurements, about proper angular 
momentum, about two particle types (fermions and bozons).  

In this case we can imagine the motion description as two components 
combination: slow (typical for classical physics) and fast (oscillating). Such second 
particle motion component (“Zitterbewegung”) (for example, electron) that obeys to the 
Dirac relavistic equation was theoretically found by Shrödinger in 1930. The oscillation 
frequency corresponds to the transitions from particle to anti-particle (near 2mc2/ħ ≈ 
1020 Hz). The oscillation phase like the Bohm’s model can be considered as the hidden 
non-local variable. The quantum inaccuracy of measurement is just connected with this 
oscillation. 

Let us introduce the instant action: 
 

s(t)=q(t)p(t)=q0sin ωt · p0sin (ωt+φ)] 

 
This expression can be written as the sum of two components 
 

s(t)=q(t)p(t)=(q0p0) [cos φ (sin ωt sin ωt) + sin φ (sin ωt cos ωt)] 
 
The first term in the square brackets is proportional to cos φ and represents so-

called active component. It does not contain a phase shift between two harmonic 
factors. This component describes the irreversible energy lost per period in the 
oscillator, it may be calculated by direct integrating over period: 

 
Sa=(q0p0) cos φ 

 
The second term in the square brackets is proportional to sin φ and represents so-

called reactive component. It contains the phase shift between two harmonic factors 
equal to π/2. This component describes the purely oscillating energy, its averaged value 
is of course equal to zero. 

When φ=0, then all the energy of the oscillator should be dissipated during the 
period; when φ= π/2, then the oscillator total energy over the period is conserved. 

It is easily to show that the total variance of two components relative to the mean 
value Sa is 
 

D = (q0p0)
2 (cos2φ + sin2φ)/8=(q0p0)

2/8 
 
If we transit from the amplitudes q0 and p0 to the effective values qeff and peff, then we 
have the Heisenberg’s relationship:  
 

D = (qeffpeff)
2/4 

 
where we have to replace the classic action (qeffpeff) prefactor by the quantum constante 
ħ. 
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