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One usually describes a double-slit experiment like classical interference. At this one 

introduces a wave function (complex) amplitude instead of a “real” wave amplitude, and the square 

of the wave function amplitude modulo gives the probability value (the Born rule). R. Feynman 

considered this as the main quantum mechanics mystery. Here we come to the same viewpoint by 

using standard rule of the consistent alternatives addition of the probability theory, i.e., while one 

physically admits a possibility for both particles to travel through two splits simultaneously (not 

through one of them only). By such a way we explain a gradual revealing of an interference pattern 

in a number of experiments with single particle exclusively by the statistical features of individual 

experiments, not by some ensemble collective properties (e.g., “entanglement in time”). We also 

discuss the similar situation with the quantum walk alternative trajectories of Cs atoms in 

experiments where the Leggett – Garg inequalities were tested. 

 

 

1. Double-slit experiment description 

 

As it is known, a quantum system and process can be in the superposition state. For 

example, one can suggest that that the particle trajectories in a double-slit experiment may be 

superposed. 

R. Feynman described the double-slit experiment with single electron in his famous 

manual on Physics [1]. If particle detectors are positioned at the slits, showing through which slit 

a photon goes (“which way information” is present), the interference pattern is absent, and we 

have 

                                                  A
2
=A1
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2
,
                                                                                

(1a) 

 

where the square of the total wave amplitude A is equals to the sum of two partial (harmonic) 

wave amplitudes A1
 
and A2. However, when one does not know through which slit a particle 

goes (“which way information” is absent), than the interference pattern can be revealed like the 

case of two coherent classical waves:  

 

                                        A
2
=A1

2 
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2 
+ 2 A1 A2 cos Δφ,                                       (1b) 

 

i.е., the interference term with the phase difference Δφ between two wave propagation lines in 

the observation point is added.  

The formulae (1a, 1b) contain the particle current amplitudes. So, one implicitly considers 

some collective particles movement that aren’t separated by sufficient time intervals. However, 

when two single particles separated by a large time intervals travel through the slits one after 

another we have to talk about the probability for a single particle to travel by one way or another, 

not about the current amplitude. Meanwhile, a transition from the current amplitude to the single 

particle probability does not present a difficult problem – this probability just has to be simply 

proportional to the corresponding amplitude square. 

R. Feynman uses the notion of complex probability amplitude a instead the typical 

harmonic source amplitude [1]. Such the probability amplitude multiplied by a phase factor is 

equal to the square root from the event probability P in the perfect experiment: |a|
2 

= P. If an 

event can be realized by a number of ways, then we have to add the amplitudes for each possible 

way, and the interference appears: a = a1
 
+ a2, and P = |a1

 
+ a2|

2
; to calculate the interference 

terms we have to multiply one amplitude by the conjugate to another. However, if the 
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experiment’s arrangement allows us to be informed about of which way was really realized, then 

the total probability is simply the sum of the partial probabilities, the interference is absent:                      

P = |a1|
2 

+ |a2|
2
. 

 

2. The formalism to describe a superposition 
 

Let us try to transit to the probability more straightforward and clear. It is useful to apply 

the total probability formula P(A1A2) for two joint alternatives [2], i.e., to admit that one of 

them does not excludes the other one. In such the case the total probability can be written as 

 

                                     P(A1A2) = P(A1) +P(A2) – P(A1A2).                                (2) 

where: 

 

P(A1) ~ A1
2  

is the probability of the alternative A1 only; 

P(A2) ~ A2
2  

is the probability of the alternative A2 only; 

P(A1A2) is the probability of the simultaneous alternative A1 and A2 realization. 

 

In order to obtain the similarity between (2) and (1b) let us now write
1
: 

 

                                     P(A1A2) = P(A1) + P(A2) + 2K0.                                          (3) 

 

Here we introduced the correlation momentum K0 between alternatives A1 and A2: 

 

                                              K0 = – P(A1A2)/2.                                                         (4) 

 

As total probability has to be equal to the unit  

 

                                                          P(A1A2) = 1,                                                    (5) 

we find from (3): 

                                             K0 = – [P(A1) + P(A2) – 1]/2.                                            (6) 

 

From (1b) and (3) we can conclude that in the double-slit experiment we obtain 

 

                                                   K0 ~ (– A1 A2 cos Δφ).                                                 (7) 

  

This means that the correlation momentum K0 is proportional to the correlation function cos Δφ.  

 

3. Is there an entanglement in time between double-slit trajectories? 

 

Do we have to say that the particle trajectories should be “entangled in time”? For 

example, the work [3] describes the behavior of the single-electron beam in a biprism whose 

features are similar to a double-slit screen. In the experiments it was possible to accumulate 

gradually and record the results of the electrons travelling.  

As single spot number on the screen increased (up to 200 000), an interference pattern 

gradually appeared. So, we come to the dilemma:  

 

 either we meet some “collective” behavior of electrons where (at least) the actual 

trajectories “know” the previous distribution of the single spots on the screen; if so, the 

duality particle-wave concept has a sense at a collective description only;  

                                                           
1
 It is useful to remember that the total dispersion of two observables is [2]:  . 
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 or a single electron interferes with it-self (more precisely, two possible electron motion 

trajectories interfere), i.e., in each experiment involving single electron the probability 

spot distribution is described by (1b), not by (1a); in such the case the duality particle-

wave concept has a sense just at a single description. 

 

As we believe, it is not useful to discuss first scenario and describe the electron ensemble 

only. Similarly, it not useful to state that a single particle having some thermal speed “mystically 

knows” the value of the whole ensemble average temperature. The statistics appears 

independently due to the large numbers law, as well as macroscopic interference pattern too. 

 

4. Another example of the trajectory superposition  

 

In 2015 the scientific group from Germany and United Kingdom performed the experiment 

[4] in which the quantum walk of a massive quantum particle (Cs atoms) was investigated. The 

results rigorously exclude (i.e., falsify) any explanation of quantum transport based on classical, 

well-defined trajectories. Contrary, they confirm the atom displacement as a witness of quantum 

alternative trajectories superposition. This work was performed in order to test the Leggett – 

Garg temporal inequality [5] that distinguishes classical (well defined, they aren’t in a 

superposition) states from quantum ones (being in a superposition). 

Let us now make two remarks. First, in their original paper [5] Leggett and Garg 

investigated namely states, not trajectories; however, this fact was not explicitly noted in [4]. 

Second, as we believe, just the fact of the correlations existing may form the simpler 

superposition witness than the Leggett – Garg inequality satisfaction. Indeed, in our work [6] we 

demonstrated that the inequality violation depends exclusively on the three correlation function 

values between dichotomous observables. This forces the Leggett’s original idea that namely 

correlative links distinguish (inconsistent in principle) classical alternatives from quantum ones 

(which may be consistent). Because of that, in our opinion, just the fact of non-zero correlation 

function is the witness of the alternatives non-classicality. E.g., for the set of alternative 

trajectories from [4] one could compare the probabilities P1, P2, …, Pn (of the Cs atom travelling 

between initial and final points) corresponding to known way with the probability P0 

corresponding to unknown way. If the probability sum P1, P2, …, Pn is not equal to P0, then this 

means the amplitudes addition, not the probabilities one, i.e. the trajectories existing is 

confirmed. 

Is the correlation existing sufficient condition of the physical alternatives non-classicality? 

Generally, the answer is negative, because in classical physical systems some mutual links or 

feedbacks leading to correlativity between alternatives may appear. However, in the Legget’s 

approach it may be sufficiently enough, because we talk about the well defined states that do not 

depend on other possible states (macro-realism). On the other hand, although it seems be 

surprising, Leggett-Garg inequalities do not form an optimal tight boundary for macrorealistic 

theories (like Bell’s inequalities do for local realism), they unnecessarily limit the parameter 

space in which potential violations of macroscopic realism can be found [7].  
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