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BELL’S THEOREM AND LOCAL INDETERMINISM 
(26.12.2007) 

 
As it is well known, the different deterministic models cannot explain the results of EPR-

experiments and the Quantum Mechanics predictions. In addition to these models a local indeterministic 
one due to the Malus law is considered in the paper. It is shown that this model is also unable to explain 
the remote EPR-correlations. 

 
Introduction 
 

As it is known, a pair of coherent photon flies away in the opposite directions from 
a common space point when one tests a Bell’s inequality violation in the EPR-
experiment. There are two polarizers at each side of the setup that are separated by a 
spacelike distance. The coincidence counts of photons passing through both polarizers 
should be computed in the experiment.  

Note, Quantum Mechanics (QM) predictions for the coincidence counts and the 
correlation function dependence on an angle difference between polarizer orientations 
was surely confirmed in such type of experiments (see [Aspect, 2000], [Weihs  et al., 
1998]). The numerous attempts to explain the experiment results using some hidden 
variables theories (LHV) (i.e. any common determined cause leading to EPR-
correlations) were unsuccessful. Further, the Bell’s theorem theoretically showed the 
groundlessness of all the Local Realism Models basing on a local deterministic 
measurements. Last years the experiments were performed that disproved the non-
local hidden local variable (NHV) theories (see [Branciard et al., 2007], [Paterek et al., 
2007]). All this leads to any “superluminal” influence between two remote events and 
some collision between the Relativity and QM (see [Aspect, 2000], [Gizin, 2005]).   

However, the Bell’s theorem condition is sufficient but not necessary one to violate 
the Bell’s inequality [Khrennikov, 2007]. It means this one can be violated in a different 
case too. Indeed, Bell applied the deterministic measurement model, when a hidden 
variables strongly determine the measurement outcome.  But, as I know, until now 
nobody considered any Local Indetrministic Measurement Model (LIMM), when a 
hidden variables determine the measurement outcome with any probability, although 
the indeterminism just presents a corner stone of QM. I believe, the QM’s non-locality 
cannot be considered as complete one without examination of such models. 

 
Experimental testing of EPR-correlations 
 

In practice one uses the coincidence counts N++ , N+ –, N – –  , and N – + in the 
EPR-experiments to test Bell’s inequality. For example, N++ is the amount of events 
when each of two coherent photons passed through its polarizer. Analogously, N+ – is 
the amount of events when one of photons passed through the first polarizer, and 
another photon did not pass through the second polarizer,  etc. The total amount N of 
events is the sum of four coincidence counts, i.e. т.е. the total amount of the accounted 
coherent photon pairs. Further, the correlation function may be determined as:  

 
K = (N++ + N – –  – N+ –  – N – +)/N = P++ + P – –  – P+ –  – P – + 

 
where P are respectively normalized event probabilities.  
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Figure 1 [Adenier and Khrennikov, 2006]. 
At the left: the coincidence counts depending on a angle difference between 

polarizer orientations [Weihs  et al., 1998, Innsbruck]. At the right: the correlation 
function 

 
The typical experimental data [Weihs  et al., 1998] are plotted on the Fig. 1 (see 

[Adenier and Khrennikov, 2006]). Although several real data are not sometimes follow 
expected ones, the conclusions usually confirm the QM predictions. Note, the 
correlation function amplitude as well as minimal and maximal absolute values of the 
coincidence counts are less than theoretically expected ones, however the differences 
are small and often can be explained by an experimental details. 

 
Local Indeterminism Measurement Model (LIMM) 

 
Such kind of measurement model in the EPR-experiments one can build using the 

Malus law: if an angle between a light beam polarization and the polarizer optical axis is 
θ, then the intensity part proportional to cos2 θ will pass only through the polarizer. So, a 
real polarizer allows measure the passing radiation intensity. If the radiation is 
monochromatic (each photon has the same energy), then we really measure a photon 
amount passing through the polarizer per a time unit.  

However, it is true when the photon amount is much more than one at the same 
time moment (a classical measurement). But when the single photon passes through 
the polarizer we have the independent quantum measurement and the QM probabilistic 
language should be used to describe the test.  
 Let λ being a “true” photon polarization (a hidden variable), θI being the first 
polarizer setting, θII being the second polarizer setting. Using the Malus law one can 
determine the probabilities P1+ and P1– for a photon to pass or not to pass through the 
first polarizer  at a given x = λ – θI: 

 
P1+ = cos2x,      P1– = sin2x 

 
Analogously, we can write for second polarizer  
 

P2+ = cos2(x+ θ),      P2– = sin2(x+ θ) 
 
where θ = θI – θII, because the photons are coherent and λ–θII = (λ–θI) + (θI –θII) = x+θ. 
 
 



 3

If we consider the single (+) and (–) events as independent ones we will find for 
two polarizer joint outcomes by multiplying: 
 

P+ + (x, θ) = cos2x cos2(x+ θ),      P+ – (x, θ) = cos2x sin2(x+ θ), 
 

P– – (x, θ) = sin2x sin2(x+ θ),        P– + (x, θ) = sin2x cos2(x+ θ) 
 

It is easy to see that the sum of these four quantities is equal to 1, so the 
normalization condition is fulfilled. This normalizing will remain correct after averaging 
(integration) over all the possible x values (from 0 up to 2π), this operation will exclude a 
dependence on x: 
 

P+ + (θ) = P– – (θ) =  ¼ (1 + ½ cos 2θ),      P+ – (θ) = P– + (θ) = ¼ (1 – ½ cos 2θ), 
 

                                    K = P++ + P – –  –  P+ –  –  P – + = ½ cos 2θ 
        

Let us compare now this result with QM prediction: 
 

PQM
+ + (θ) = PQM

– – (θ) =  ¼ (1 + cos 2θ),      PQM
+ – (θ) = PQM

– + (θ) = ¼ (1 – cos 2θ), 
 
                                    KQM = PQM

++ + PQM – –  –  PQM
+ –  –  PQM – + = cos 2θ 

 
Note two important and interconnected differences: 1) LIMM predicts K and 

second term of P values (depending on 2θ)  two times less than QM; 2) LIMM predicts 
the non-zero positive minimum for P values (however, QM predicts zero for them). 
 
Computer simulation  
 

It is not difficult to study the proposed local indeterministic model analytically. 
However, a computer simulation of such EPR-test seems to be more commode and 
visual.  
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Figure 2. 
Simulation of the EPR-experiment at fixed angles between photon polarization 

 and polarizers axis (coincidence counts on the ordinate axis, the angle in  
degrees on the argument axis). 

 
It consists in the event accidental selection like a photon “passes” or not through 

the polarizer. If we know the λ and θI values, then “the outcome” (1 or 0) for the first 
polarizer is determined using random number generator: if a “registration” probability 
cos2(λ – θI) is less than a random number, then “outcome” should be set to zero (photon 
did not pass through polarizer), else it should be set to the unit. Analogous rule acts for 
the second polarizer, however the second probability should be equal to cos2(λ – θII). 
After each step the corresponding coincidence counts are incremented.   

Note that the computer model (unlike a real experiment) allows in fact control the 
parameter λ, i.e. a “true” photon polarization (as it really existed before measurement!). 
The fig. 2 shows the observables behavior at different α = λ – θI  in the EPR-
experiments. When the averaging over all the possible values λ is absent (i.e. the angle 
between photon polarization and polarizer axis is fixed) the coincidence counts N++ and 
N– – (as well as N+ – and   N– +) are not in general equal one to another, and the function 
correlation amplitude can vary from 0 up to 1. 

Contrary, when one averages over all the possible values λ, the new effect 
appears as Fig.3 shows: the count plots lift up, so their minimal value become positive. 
It is easy to show that analytically: for instance, we have at  θ = π/2  

 
                 P+ + (π/2) = P– – (π/2) =  ¼ (1 + ½ cos π) = 1/8  >  0 

 
 
 

 
 
 
 
 
 
 
 

Figure 3. 
The EPR-experiment simulation with uniform averaging of the difference 

angle between photon polarization and polarizer axis orientation. 
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Also, the correlation function depending on the angle 2θ has the amplitude equal 
to 0.5. In general, this amplitude can become more if the distribution ρ(λ) is non-uniform, 
however, in this case the counts become very divergent (see Fig. 4) contrary to the 
experimental results .  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. 
The EPR-experiment simulation with non-uniform averaging of the difference 

angle between photon polarization and polarizer axis orientation. 
 

Conclusion  
 

One can see that the experimental correlation function amplitude (90%) is near to 
the QM prediction (100%) and is not in agreement with the LIMM prediction (50%). The 
more, a Bell’s inequality violation is impossible at the 50%-amplitude value of the 
correlation function. 

The non-zero minimal coincidence count value contradicts to QM as well 
qualitatively as quantitatively. Indeed, QM predicts that the coincidence (or not) fact 
depends only on an angle difference (θI – θII) between two polarizer orientations. 
Particularly, if this difference is equal to π/2, then the coincidence is completely 
impossible. Contrary, in the LIMM corresponding to the Malus law some coincidence is 
possible even if the polarizer orientations are orthogonal but a difference between λ and 
θI (or θII) is non-zero (see Fig. 5). It is just the cause of the plots lifting up on the Fig.3 
(at the left) when one averages over all the values λ. 
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Figure 5. 

The Local Indeterminism Measurement Model predictions  
when the polarizers axis are orthogonal. 
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This conclusion is enough general. If even LIMM was based on a law different 
from the Malus one, the averaging over λ followed a non-zero contribution to the 
minimal coincidence count values. Note, it is false for deterministic models: for example, 
in the “naive” model from the paper [Aspect, 2000] the photon passing through a 
polarizer is determined by the condition, is the absolute angle difference between a 
photon polarization and the polarizer orientation less (or not) than π/4; for such model 
we get the plots presented on the Fig. 6. 

So, I belive that Bell’s theorem treating only “realistic” measurements can be 
expanded up to Generalized Bell’ Statement: all the local (as well indeterministic as 
deterministic) measurement models are unable to describe the EPR-experiment 
results corresponding to QM predictions. 

 
 
 

 

Figure 6. 
The EPR-experiment simulation (deterministic “naive” model) with uniform averaging of 

the difference angle between photon polarization and polarizer axis orientation. 
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